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ABSTRACT

An error analysis of an hyperbolic navigation system using high-altitude
satellites revealed that certain satellite arrangements result in long,
narrow corridors on the earth (singular regions), in which navigation
errors are very large. The study showed that in these singular regions
the satellite-user geometry results in navigation equations which are
sensitive to measurement errors and thus cannot be solved accurately
for all three user coordinates.
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NAVIGATION WITH HIGH-ALTITUDE SATELLITES:
A STUDY OF THE EFFECTS OF SATELLITE-USER GEOMETRY
ON POSITION ACCURACY

I. INTRODUCTION

It has become apparent that high-altitude satellites have possibilities for navigation as well
as communication. Although use of such satellites can allow the user to obtain an accurate po-
sition fix, Schweppe* pointed out that, for certain arrangements of the satellites and the user,
the error in the user's determination of his position in three coordinates is extremely large.

It is the purpose of this report to determine the extent of such singular regions, i.e., regions
in which a user cannot make a unique three-coordinate fix, and to explore the reasons for their

existence.

II. SYSTEM CONCEPT

The navigation system considered is an hyperbolic system in which a user receives timing
signals transmitted from each of three synchronous-altitude satellites. The satellite clocks,
from which the timing signals are derived, are assumed to be perfectly synchronized to a master
clock. The user measures his height as well as the time of arrival of each of the satellite signals.
In the noiseless case (that is, the user has made all his measurements perfectly and knows the
satellite positions exactly), by using the difference in the time of arrival of the timing signals
emitted by two of these satellites, the user can position himself on the locus of points satisfying
this condition, that is, on an hyperbola of revolution. By taking one of these satellites and a
third, he can determine another hyperboloid. The intersection of these two figures is not suf-
ficient to determine the user's position in three coordinates. The user knows, however, he is
on the surface of a sphere with radius equal to the radius of the earth plus his measured height.
The intersection of the sphere and the hyperboloids will determine his position in three coordinates.

In practice, the user is not able to make perfect measurements and, therefore, the effects

of measurement errors must be considered.

III. ERROR ANALYSIS

The quantities observed by the user are (a) the time of arrival of timing signals from each
of the three satellites (as indicated on the user's clock) and (b) the user's height or distance from
the center of the earth. Denote the user's position in three-dimensional space (origin at the
center of the earth) by py @ three-dimensional column vector (Fig.1). Similarly, denote the

satellite positions by the vectors Pys Py P3e If the user's clock were synchronized to the master

* F. C. Schweppe (private communication).




clock governing the satellite transmissions and there were no errors in the user's measurements,
the time of arrival of a signal from a satellite would provide the user with the distance between
himself and the satellite. That is, the user would observe indirectly

s; = |p, — Py

J ., j=1,2,3

If the user clock were offset from the master clock by an unknown constant Tor the user

would really observe

IBu—BjI +-ro=sj+-r

j=1,2,3

where To has the dimension of length, since it has the effect of changing the apparent distance

between the user and the satellite. The user height is

The quantities that y depends on then are P, Pys Pys Py and Tor

quantities as a column vector, called the state vector x,

so that, as long as there is no noise,

(1)

We express these

(2)

hy (x)] Ipy—pyl + To-

h,(x) lpy— ol + 7,
Yy = h(x) = (3)
B h3(§) lBu—BSI tTo

h4(§)ﬁ Ip,l J

The observables are, however, obscured by additive noise which can be expressed in vec-

tor form as

r=y+n=h(x)+n

(4)




We agsume that the a priori knowledge of the components of the state vector is in the form
of a probability density, In particular, we take x to have statistically independent Gaussian
components with mean

Elz] = x

and covariance

W=E[x-x )x—x_ )]

where ( )' denotes matrix transpose and E denotes the statistical expectation.* The noise vec-
tor n is also taken to be Gaussian with zero mean. Under these assumptions, the problem of
calculating the user position from noisy observables can be viewed as forming a statistical esti-
mate of the state vector x. In particular, the maximum a posteriori probability estimate of the
state vector is formed, i.e., the estimate of x that maxix;lizes p()_clg). Let g denote this esti-
mate. The error analysis of such a navigation scheme consists of calculating the covariance
matrix of the error vector e = (x — 2).

In order to do this, the vector function h(x) is first linearized about the user's true position
to make this a linear estimation problem. Let the matrix H denote the linear transformation

required to obtain the linearized version of the general nonlinear function h(-), i.e.,

h(x) ~h(x ) + H(x —x ) (5)
where
ah, (x)
Hz(hij)=( ax.) .
J 7 (x=x0)

This linear approximation of the nonlinear function h(-) is accurate when the difference between
the estimate ;c_\ and X, is small, as it should be for an accurate navigation system.

The resulting error covariance matrix

V= vi)= E[ee']

has been calculated asT

v=w-wHN+HWH] P aw = N T+ wl! (6)

where W is as previously defined and N is the covariance matrix of the noise vector, i.e.,

N = (nij) = E[ninj]

where n, is an element of the noise vector n.

Since we are interested in the estimate of Py only a submatrix of V is pertinent to the
actual navigation errors. The upper left 3 X 3 submatrix of V is the error covariance matrix
of the components of the position estimate ’;_)\u. As our measure of the accuracy of navigation,

we adopt the root-mean-squared (RMS) error between the estimate Su and the true position Py

* The statistical expectation of a matrix is taken to be the matrix of expected values of each of
the elements.

fD. L. Snyder, "Navigation with High-Altitude Satellites: A Study of the Errors in Position
Determination," Technical Note 1967-11, Lincoln Laboratory, M.IL.T. (6 February 1967),
DDC 648828, H-803,




A computer program was written to calculate the V matrix and from it the RMS position
error for any positions of the satellites and the user. The input to the program consists of the
a priori standard deviation of the components of the state vector x and the observation noise n.

These are taken to be

Ranging error 10 meters (RMS)
Height error 10 meters (RMS)
User position error 106 meters (RMS)
Satellite position error 102 meters (RMS)
Clock error 106 meters (RMS)

where the square of the ranging error and the square of the height error are the diagonal ele-
ments of the covariance matrix N, the other elements of this matrix being zero, since the ob-
servation errors are taken to be statistically independent. The squares of the remaining three
parameters are the diagonal elements of the W matrix, which is also diagonal for the same
reason. In order to eliminate any a priori knowledge of user position and clock error, the var-
iances of these quantities should ap;)mmﬁnity. This limit was well approximated by using

106 meters as the a priori variance of these quantities, which proved to be of inestimable value

in view of the finite word length of the digital computer used for the calculations. The other
parameters lead to reasonable navigation accuracies and are realizable (hopefully) with practical
equipment.¥ The program calculates the RMS error between the maximum a posteriori estimate
of P, and the actual user's position for any user-satellite geometries. -

Consider the case where the satellite positions are as follows:

Latitude Longitude
Satellite 1 0.0 30.0
Satellite 2 0.0 0.0
Satellite 3 0.0 -30.0

that is, when all three satellites are along the equator. The RMS errors for the user at var-
ious positions between 60° latitude and the equator, and 40° longitude and 0° longitude are given
in Fig. 2. At 60° latitude, the RMS error is of the order of 102 meters for all longitudes and
increases steadily as the user approaches the equator; at the equator, it has a value of 106
meters, but this is the a priori assumption of the position error (Fig.3). The observations and
calculations have not given the user any information about his position. This is a singular re-
gion of the type discovered by Schweppe.

We have seen that the RMS error varies markedly over the different user positions. The
question then arises as to why certain arrangements of satellites and user cause large errors

in position determination.

IV. ANGLE BETWEEN HYPERBOLAS

Consider again how a user would determine his position if this were a deterministic case
(i.e., no noise and no errors in satellite position knowledge). He would calculate two hyperbolas
of revolution and a sphere, all three of which he knows he must be on (Fig. 4). The intersection

of these figures, therefore, provides his position fix. Suppose, however, instead of being a

* T.J. Goblick, Jr., "Navigation with High-Altitude Satellites: A Study of Ranging Errors,"
Technical Note 1966-46, Lincoln Laboratory, M.L.T. (26 August 1966), DDC 643851, H-752.




deterministic case, there is some error in the user's measurements and thus an error p in his
calculations of the position of one hyperbola. This error would produce an error in position

determination

€= Sine 0

HYPERBOLOID 1

W HYPERBOLOID 2

where © denotes the angle formed by the hyperboloids intersected with the plane of the earth at
the point of the user. If © is close to 90°, sin®© is close to one and the error € in the user's
determination of his position is nearly equal to the error p in his calculations. However, as
© - 0, sin® -~ 0 and € - », which indicates that the error p would be greatly magnified for small
angles. The hyperboloids and the sphere intersect in such a way that the user, unable to meas-
ure perfectly, cannot determine his position accurately in three coordinates. The error in his
position determination would be entirely dependent on his a priori knowledge.

To calculate O, let P, be a three-dimensional vector (as in Sec. III), origin at the center
of the earth, denoting the user's position with coordinates (xu, Vit zu), and let Pys Py and P3
represent the three satellites with coordinates (xi,yi, zi), (xz,yz, zz), and (x3,y3, z3), respec-

tively. Then the distance between the user and each of the satellites is

z 2 2 o
“_)u_l)i| —J(xu—xi) +(yu_yi) e, - g) =8 ,» 1=2%1,33 . (8)

Since the time required for the user to receive the timing signals is a function of the dis-
tance between the user and the satellite, we can describe the hyperboloid on which the user is
located as the locus of points such that the difference in the distance between that point and two
other points is constant. One hyperboloid is determined by satellite 1, satellite 2, and |s1 - szl;
and another by satellite 2, satellite 3, and |s2 = s3| . From Eq. (8), the two hyperboloids are

f,x,y,2) = [s; —s,| = J(x—x1)2 ty—y) P+ (z-2,)°

— J;x - xz)2 +(y - yz)2 + (z — zz)2 (9)

fz(x,y, z) = |sz—53| = J(x—xz)z + (y—yz)2 + (z—zz)2

2 2 2
—J(X-X3) ty—y3)" + (2 - 25) . (10)
If f is a function of three independent variables (x, y, z), the gradient of the function is
defined as
of of of
Vf = — = o
f=xltgyit gk




where i, j, and k are unit vectors along the positive x, y, and z axes, respectively, Geomet-
rically, Vf, evaluated at the point (xo, Yo zo), is a vector whose direction is normal to the level
surface [i.e., the set of all points such that f(x, y, z) = c] at the point (xo, Yo zo). In particular,
f1 (x,¥, 2z) in Eq. (9) defines a family of hyperboloids, the value of ]s1 - s2| defining the particu-
lar hyperboloid. The gradient of f1 evaluated at a point (xo, Yo zo) will be a vector whose direc-
tion is normal to the particular hyperboloid passing through (xo, Yo zo). Likewise, we could
find a vector whose direction is normal to the hyperboloid defined by fz(x, ¥y, z) in Eq. (10) pass~-
ing through the point (xo, yo, zo).

if Vf1 and sz are the gradients of the functions f1 and fZ' then the angle ©, formed by the
intersections of the hyperboloids and the tangent plane of the sphere, can be found by computing
the angle projected in the tangent plane between Vf1 and sz evaluated at the user's position.

\ /

HYPERBOLOID 2

POSITION __y
OF USER

PLANE
TANGENT
TO EARTH

HYPERBOLOID 1

/ N

Let E be a unit vector normal to the plane tangent to the sphere at the point of the user. Then

Vi, XE

Y = To1, X El (11)

and

Vi, X E

82 = Vi, XE (12)

are unit vectors in the plane tangent to the sphere, and

- u

cos 6 =u u,

1
or
-1
© =cos " (u- u,) (13)

When Eq. (13) is evaluated for satellite-user geometries where navigation accuracy is known
to be poor, the values of © should be near or exactly zero. In particular, if this expression is
evaluated for the satellite geometry used in Sec.III at the user positions that had the maximum
RMS position error, that is, when the user is located at any point along the equator, cos © does
equal one or the angle between the hyperbolas in the plane tangent to the earth equals zero (see
Fig. 5).

Since it is more difficult to solve this equation for non-equatorial cases, a computer

program was written. Input to the program consists of the longitude and latitude of the three




o — =

satellites and the user; 1/sin © is the output quantity rather than O, since the error magnifica-
tion is seen in Eq. (7) to depend on 1/sin O,

There is a direct correspondence between the user locations resulting in large values of
1/sin © and user locations with large RMS position errors for the same satellite geometry. The
expression 1/sin © had a minimum value at 60° latitude for all longitudes and increased steadily
until, along the equator, © became zero and 1/sin9 could not be computed. It was also at 60°
latitude that the minimum RMS position error occurred, and along the equator that the maximum

occurred.

V. RESULTS

It is interesting to explore satellite-user geometries with less symmetry than the equatorial
case of Fig.5. The two computer programs were run, therefore, for other satellite and user
positions.

The following satellite positions provide a case with only east-west symmetry.
Latitude Longitude

Satellite 1 0.0 30.0
Satellite 2 10.0 0.0
Satellite 3 0.0 -30.0

Navigation accuracy for user positions from +60° to —60° latitude and from —40° to +40° longi-
tude was studied. A singular region again appeared. The maximum RMS error of the user at
—40° longitude occurred at latitude +41° at 0° longitude, it appeared at 49° latitude; and at 40°
longitude, the maximum was at 41° latitude. The effect of moving the satellite north was to
move the singular region in that direction while the southern hemisphere became free from any
singular points. The actual values of the errors are meaningful only in a relative sense because
the region was not sampled finely enough to conclude that the worst point was found. The results
of the program to calculate the angle between the hyperboloids for this same geometry again
showed the maximum value of 1/sin© occurring at exactly the same user positions as the maxi-
mum RMS position errors [see Fig. 6(a-b)].

If satellite 2 is now moved to 15° latitude, 15° longitude, all symmetry is destroyed, and
user positions from —40° to +40° longitude and +75° to —75° latitude must be studied. (The in-
crease in the range of latitude is needed because of the more northerly position of the satellite.)
Again, there is a narrow locus of singular points with the worst point this time occurring (user

longitude 0°) at user latitude 68°. This, however, is nearly out of the region of mutual visibility™

of all three satellites [see Fig. 7(a-b)]. The region of singular points could probably be moved
entirely out of the region where the user could see all three satellites by further adjustment of
the northern satellite.

- We can conclude that the region of singular points exists whether the satellites are arranged
symmetrically or unsymmetrically. The arrangement of the satellites does, however, have an

effect on the location of the region of large errors.

*In this report, visibility curves are computed using an elevation angle of 7°.




Taking the positions of the satellites to be

Latitude Longitude
Satellite 1 0.0 45.0
Satellite 2 0.0 0.0
Satellite 3 0.0 -45.0

we find that the singular points again occur on the equator as expected, and that the maximum
values of the RMS position errors are the same along the equator as for the previous equatorial
case because of the a priori assumptions. If, however, we compare the RMS values of the user
positions off the equ;t;;To—; the 30° and 45° cases, we find that the corresponding values for the
30° case are 2.1 times larger than those for the 45° case, and that 1/sin®© is 0.5 times larger
for the 30° case [see Fig.8(a-b)]. The effect of having the equatorial satellites 90° instead of 60°
apart was a decrease in the width of the region of large errors. However, the region of mutual
visibility when the two satellites are 90° apart is so limited that three satellites would not be
sufficient to cover the North Atlantic, for example; whereas, this could be done if the satellites
were only 60° apart.

Thus, if high-altitude satellites are to be used for navigation, consideration must be given
to arranging the satellites so that the user will not be in a singular region, that is, so that the
user will be able to determine his position accurately. But consideration must also be given to
making the area of mutual visibility of the user and the satellites large enough for the system to
be practical.

VI. SUMMARY
From the preceding, the following conclusions can be drawn:
(1) It appears that all satellite geometries result in long, narrow corridors

in which navigation accuracy is poor.

(2) The cause of this singular region is geometric in nature; that is, the two
hyperboloids and the sphere which locate the user intersect in such a way
as to greatly magnify any error in the user's measurements.

(3) A system with all satellites on the equator always yields a singular region
along the equator. Thus a practical system would utilize at least one non-
equatorial satellite.

(4) If two of the satellites are on the equator and the third is located far enough
north, the singular region can be shifted outside the range of mutual visi-
bility.

(5) If two of the satellites are on the equator, the singular region is located in
the same hemisphere as the third satellite; i.e., the opposite hemisphere
will be free from singular points.
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USER PCSITICN

LAT

60.0
59.0
58.C
57.0
56.0
55.0
54.C
53.0
52.0
51.0
50.0
49.0
48.0
47.C
46.0
45.0
44,0
43.0
42.0
41.0
40.0
39.0
38.0
37.¢C
36.0
35.0
34.C
33.0
32.0
31.0
30.0
29.0
28.0
27.0
26.0
25.0
24.0
23.0
22.0
21.0
20.0
1.0
18.0
17.0
16.0
15.0
14.0
13.0
12.0
11.0

LCNG

0.0
9.3210
$.3690
9.4210
9.4770
9.5390
9.6(50
S.676D
9.7520
$.8350
9.9230
1.0020
1.0120
1.0230
1.0340
1.04¢D
1.0590
1.0730
1.D088D
1.104D
1.1210
1.1390
1.1590
1.1790
1.2010
1.2250
1.2500
1.2770
1.3060
1.3370
1.3710
1.4C70
1.446D
1.4880
1.5330
1.5830
1.63¢D
1.6950
1.7590
1.8300
1.9070
1.9920
2.0890
2.1950
2.3150
2.4500
2.6040
2.781D
2.9850
3.2250
3.5080
3.8490
4.2680
4.7910
5.4660
6.3670
7.6310
9.5280
1.2690
1.9030
3.8020
1.0000

4.C0C

$.3190
9+366D0
9.4180
9.4740
9.5350
9.6C1D
9.6720
S.7480
9.830D0
9.918D
1.0010
1.0110
1.0220
1.0330
1.04¢D
1.0590
1.073D
1.0870
1.1030
1.1200
1.1380
1.1570
1.178D0
1.2000
1.2230
1.2490
1.2760
1.304D
1.2360
1.3690
1.4050
1.4440
1.4860
1.5310
1.5800
1.6340
1.6520
1.7570
1.827D
1.9040
1.9900
2.D850
2.1520
2.3110
2.4460
2.6000
2.776D
2.9800
3.2190
3.5020
3.842D
4.2590
4.7820
5.4550
6.355D
7.616D
9.5090
1.2670
1.8990
3.7940
1.0000

[¢13

8.000

$.3120
S.3590
9.4100
9.466D
9.5260
9.5610
9.6600
S.7360
9.8160
9.9030
9.996D
1.CC90
1.0200
1.0310
1.0430
1.0560
1.0700
1.0850
1.1000
1.1170
1.1350
1.154D
1.174D
1.156D
1.2190
1.244D
1.2710
1.3CDD
1.3310
1.364D
1.3990
1.438D
1.4790
1.5240
1.573D0
1.6270
1.6850
1.7480
1.818D
1.8950
1.9800
2.0750
2.180D
2.2990
2.4330
2.5850
2.760D
2.9630
3.2C0D0
3.4820
3.8200
4.2350
4.754D
5.4230
6.3170
7.5700
9.4520
1.2590
1.8870
3.7710
1.0000

D2
D2
02
D2
D2
02
02

03
04
c4
04
06

12.000

9.3020
943480
9.3970
9.4510
9.5100
9.5730
9.6410
9.7150
9.7940
9.8780
9.9690D
1.0070
1.017C
1.0280
1.0400
1.0530
1.06¢0D
1.0800
1.6G960
1.1120
1.1300
1.1490D
1.169D
1.1900
1.2130
1.237C
1.264D
1.2920
1.3220
1.355D
1.3%00
1.428D
1.4690
1.513D
1.5620
1.6140
1.6720
1.7340
1.8030
1.8790
1.9630
2.D570
2.1610
2.2780
2.4110
2.5620
2.7350
2.9350
3.1700
3.44€D
3.7830
4.1930
4.7070
5.3690
6.2540
T.4940
9.3570
1.24¢€D
1.8680
3.7330
1.0000

02
02
02
02
02
02
02
02
02

03
03
D3
03
03
03
04
04
04
a6

16.600 20.000 24.00D
9.2880 02 9.271D 02 9.251D 02
9.3320 02 9.3130 02 9.2900 02
9.3800 02 9.3580 02 9.333D 02
9.432D0 D2 9.407D 02 9.379D 02
9.488D 02 9.461D 02 9.430D 02
9.5490 €2 9.520D 02 9.4850 02
9.6150 D2 9.583D 02 5.544D 02
9.6860 02 9.651D 02 9.6C9D 02
9.763D 02 9.7240 02 9.678D 02
9.8450 02 9.8020 02 9.753D 02
9.933D 02 9.887D 02 9.833D D2
1.003D 03 9.977D 02 9.519D 02
1.0130 03 1.007D 03 1.001D 03
1.024D 03 1.0180 03 1.011D 03
1.035D 03 1.0290 03 1.0220 03
1.0470 03 1.041D 03 1.0330 03
1.0600 D3 1.0530 03 1.0450 03
1.0750 03 1.0670 03 1.058D 03
1.0900 03 1.0810 03 1.0720 03
1.1060 63 1.097D 03 1.C87D 03
1.1230 03 1.113D D3 1.102D 03
1.16410 03 1.1310 D3 1.1150 03
1.1600 03 1.1500 03 1.1380 D3
1.1810 03 1.1700 03 1.157D 03
1.2040 03 1.1920 03 1.1780 03
1.2280 03 1.2150 D3 1.260D 03
1.253D 03 1.24D0 03 1.224D D3
1.2810 03 1.2670 03 1.250D 03
1.3110 03 1.2960 03 1.278D 03
1.3430 03 1.3270 03 1.308D 03
1.3770 03 1.3610 03 1.340D €3
1.4140 03 1.3970 03 1.375D 03
1.455D €3 1.4360 03 1.4130 03
1.4980 03 1.478D 03 1.4540 03
1.545D 03 1.525D 03 1.4990 D3
1.597D 03 1.575D 03 1.5480 03
1.653D 03 1.6300 03 1.601D 03
1.7150 03 1.690D D3 1.659D 03
1.7830 03 1.7560 03 1.723D 03
1.8570 €3 1.8290 03 1.7940 03
1.9400 03 1.910D 03 1.873D 03
2.0320 03 1.9990 03 1.9600 03
2.134D 03 2.1000 03 2.0570 03
2.2500 03 2.2130 03 2.167D 03
2.3800 03 2.3400 D3 2.2910 03
2.5280 03 2.485D 03 2.4320 03
2.699D €3 2.652D 03 2.595D 03
2.8960 03 2.8450 03 2.7830 03
3.127D 03 3.0720 03 3.0030 03
3.401D 03 3.340D D3 3.2650 03
3.7310 03 3.6630 03 3.580D 03
4.1350 03 4.059D 03 3.9660 03
4.641D 03 4.5550 03 4.450D 03
5.2940 03 5.1950 03 5.073D 03
6.1650 03 6.0500 03 5.9070 03
7.387D 03 7.248D 03 7.0760 03
9.2230 03 9.0480 03 8.8330 03
1.2280 04 1.2050 04 1.1760 04
1.841D 04 1.806D 04 1.763D 04
3.6790 04 3.6090 04 3.5230 04
1.0000 06 1.0000 06 1.000D 06
equatorial satellites.

Fig. 2. RMS position errors for all
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9.2300
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9.3050
9.3480
9.3950
9.4460
9.5010
9.5610
9.6260
9.6960
9.7710
9.8520
9.9390D
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Fig. 5. 1/sin@ for all equatorial satellites.
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Fig. 8(b). RMS position errors for satellites at 30-0, 0-0, —30-0.
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